Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae.

Identifieur interne : 000642 ( Main/Exploration ); précédent : 000641; suivant : 000643

The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae.

Auteurs : Ali Amiryousefi [Finlande] ; Jaakko Hyvönen [Finlande] ; Péter Poczai [Finlande]

Source :

RBID : pubmed:29694416

Descripteurs français

English descriptors

Abstract

Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.

DOI: 10.1371/journal.pone.0196069
PubMed: 29694416
PubMed Central: PMC5919006


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae.</title>
<author>
<name sortKey="Amiryousefi, Ali" sort="Amiryousefi, Ali" uniqKey="Amiryousefi A" first="Ali" last="Amiryousefi">Ali Amiryousefi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyvonen, Jaakko" sort="Hyvonen, Jaakko" uniqKey="Hyvonen J" first="Jaakko" last="Hyvönen">Jaakko Hyvönen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poczai, Peter" sort="Poczai, Peter" uniqKey="Poczai P" first="Péter" last="Poczai">Péter Poczai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29694416</idno>
<idno type="pmid">29694416</idno>
<idno type="doi">10.1371/journal.pone.0196069</idno>
<idno type="pmc">PMC5919006</idno>
<idno type="wicri:Area/Main/Corpus">000766</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000766</idno>
<idno type="wicri:Area/Main/Curation">000766</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000766</idno>
<idno type="wicri:Area/Main/Exploration">000766</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae.</title>
<author>
<name sortKey="Amiryousefi, Ali" sort="Amiryousefi, Ali" uniqKey="Amiryousefi A" first="Ali" last="Amiryousefi">Ali Amiryousefi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyvonen, Jaakko" sort="Hyvonen, Jaakko" uniqKey="Hyvonen J" first="Jaakko" last="Hyvönen">Jaakko Hyvönen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poczai, Peter" sort="Poczai, Peter" uniqKey="Poczai P" first="Péter" last="Poczai">Péter Poczai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Genome Size (MeSH)</term>
<term>Genome, Chloroplast (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Solanum (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Génome de chloroplaste (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Solanum (génétique)</term>
<term>Taille du génome (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Solanum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Solanum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Genome Size</term>
<term>Genome, Chloroplast</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Annotation</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Génome de chloroplaste</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Taille du génome</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29694416</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae.</ArticleTitle>
<Pagination>
<MedlinePgn>e0196069</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0196069</ELocationID>
<Abstract>
<AbstractText>Bittersweet (Solanum dulcamara) is a native Old World member of the nightshade family. This European diploid species can be found from marshlands to high mountainous regions and it is a common weed that serves as an alternative host and source of resistance genes against plant pathogens such as late blight (Phytophthora infestans). We sequenced the complete chloroplast genome of bittersweet, which is 155,580 bp in length and it is characterized by a typical quadripartite structure composed of a large (85,901 bp) and small (18,449 bp) single-copy region interspersed by two identical inverted repeats (25,615 bp). It consists of 112 unique genes from which 81 are protein-coding, 27 tRNA and four rRNA genes. All bittersweet plastid genes including non-functional ones and even intergenic spacer regions are transcribed in primary plastid transcripts covering 95.22% of the genome. These are later substantially edited in a post-transcriptional phase to activate gene functions. By comparing the bittersweet plastid genome with all available Solanaceae sequences we found that gene content and synteny are highly conserved across the family. During genome comparison we have identified several annotation errors, which we have corrected in a manual curation process then we have identified the major plastid genome structural changes in Solanaceae. Interpreted in a phylogenetic context they seem to provide additional support for larger clades. The plastid genome sequence of bittersweet could help to benchmark Solanaceae plastid genome annotations and could be used as a reference for further studies. Such reliable annotations are important for gene diversity calculations, synteny map constructions and assigning partitions for phylogenetic analysis with de novo sequenced plastomes of Solanaceae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Amiryousefi</LastName>
<ForeName>Ali</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hyvönen</LastName>
<ForeName>Jaakko</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Organismal Evolutionary Biology Research Program, Faculty of Biology and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Poczai</LastName>
<ForeName>Péter</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">0000-0002-0107-1068</Identifier>
<AffiliationInfo>
<Affiliation>Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059646" MajorTopicYN="N">Genome Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054628" MajorTopicYN="Y">Genome, Chloroplast</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032322" MajorTopicYN="N">Solanum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29694416</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0196069</ArticleId>
<ArticleId IdType="pii">PONE-D-17-15781</ArticleId>
<ArticleId IdType="pmc">PMC5919006</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PhytoKeys. 2013 May 10;(22):1-432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23794937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Data Brief. 2017 Oct 07;15:606-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29085876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Oct;23(10):1912-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16835291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2016 Jun 23;17 (1):134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27339192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 29;6:883</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 Nov 1;530(1):143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 20;13:715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23256920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2014 Oct;20(10):1499-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25142065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3252-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jan 1;33(1):130-132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27634949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 19;9(3):e92501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24647560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2011 Nov;33(11):2317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21833547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Apr 5;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29659705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Mar;31(3):645-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Springerplus. 2013 Sep 12;2:459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24083106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W6-W11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28486635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23527231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Dec;10(12):833-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Res. 2009;23(8):719-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19418354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 May;112(8):1503-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16575560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 22;9(5):e98353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24851862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):123-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22267485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2013 Sep 30;13:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24283922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Mar 1;25(5):955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9023104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 03;9(11):e110656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25365514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Aug;93(8):1140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 May 1;13(9):2211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7514532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Oct 23;10:321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20969798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jan 05;11:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 May 27;2(6):16074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27255838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jul 26;6:30135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27456469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(2a):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12425036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Aug;63(2):194-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16830097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2004 Aug 31;11(4):247-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2016 May;62(2):431-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26650613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Sep;5(9):2043-2049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2001 Oct-Nov;53(4-5):327-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11675592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(2):415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W253-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Sep 12;353(6340):178-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1653905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):295-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 30;485(7400):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22660326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2017 Mar 1;34(3):772-773</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28013191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Dec;25(12):1369-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16835751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Dec;17(12):737-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22981395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Nov;52(5-6):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17957369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Feb;30(2):217-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 May;15(5):426-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10366664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2015 Jan;32(1):268-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Nov 2;12 (11):e0187199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29095905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Sep;19(9):1602-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Oct 30;10(10):e0140285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26517707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Mar;5(2):339-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17309688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):183-95; discussion 195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul 30;9(8):772</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Dec;257(1):23-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9439565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2010 Sep 28;6:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920211</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
<region>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Amiryousefi, Ali" sort="Amiryousefi, Ali" uniqKey="Amiryousefi A" first="Ali" last="Amiryousefi">Ali Amiryousefi</name>
</region>
<name sortKey="Hyvonen, Jaakko" sort="Hyvonen, Jaakko" uniqKey="Hyvonen J" first="Jaakko" last="Hyvönen">Jaakko Hyvönen</name>
<name sortKey="Hyvonen, Jaakko" sort="Hyvonen, Jaakko" uniqKey="Hyvonen J" first="Jaakko" last="Hyvönen">Jaakko Hyvönen</name>
<name sortKey="Poczai, Peter" sort="Poczai, Peter" uniqKey="Poczai P" first="Péter" last="Poczai">Péter Poczai</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000642 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000642 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29694416
   |texte=   The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29694416" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024